public final class OneVsRestModel extends Model<OneVsRestModel> implements OneVsRestParams, MLWritable
OneVsRest
.
This stores the models resulting from training k binary classifiers: one for each class.
Each example is scored against all k models, and the model with the highest score
is picked to label the example.
param: labelMetadata Metadata of label column if it exists, or Nominal attribute representing the number of classes in training dataset otherwise. param: models The binary classification models for the reduction. The i-th model is produced by testing the i-th class (taking label 1) vs the rest (taking label 0).
Modifier and Type | Method and Description |
---|---|
Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> |
classifier()
param for the base binary classifier that we reduce multiclass classification into.
|
OneVsRestModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
featuresCol()
Param for features column name.
|
Param<String> |
labelCol()
Param for label column name.
|
static OneVsRestModel |
load(String path) |
ClassificationModel[] |
models() |
int |
numClasses() |
int |
numFeatures() |
Param<String> |
predictionCol()
Param for prediction column name.
|
Param<String> |
rawPredictionCol()
Param for raw prediction (a.k.a.
|
static MLReader<OneVsRestModel> |
read() |
OneVsRestModel |
setFeaturesCol(String value) |
OneVsRestModel |
setPredictionCol(String value) |
OneVsRestModel |
setRawPredictionCol(String value) |
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
weightCol()
Param for weight column name.
|
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
params
getClassifier
extractInstances, validateAndTransformSchema
extractInstances, extractInstances
getLabelCol
getFeaturesCol
getPredictionCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
getRawPredictionCol
getWeightCol
save
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
public static MLReader<OneVsRestModel> read()
public static OneVsRestModel load(String path)
public Param<Classifier<?,? extends Classifier<Object,Classifier,ClassificationModel>,? extends ClassificationModel<Object,ClassificationModel>>> classifier()
OneVsRestParams
OneVsRest
.classifier
in interface OneVsRestParams
public final Param<String> weightCol()
HasWeightCol
weightCol
in interface HasWeightCol
public final Param<String> rawPredictionCol()
HasRawPredictionCol
rawPredictionCol
in interface HasRawPredictionCol
public final Param<String> predictionCol()
HasPredictionCol
predictionCol
in interface HasPredictionCol
public final Param<String> featuresCol()
HasFeaturesCol
featuresCol
in interface HasFeaturesCol
public final Param<String> labelCol()
HasLabelCol
labelCol
in interface HasLabelCol
public String uid()
Identifiable
uid
in interface Identifiable
public ClassificationModel[] models()
public int numClasses()
public int numFeatures()
public OneVsRestModel setFeaturesCol(String value)
public OneVsRestModel setPredictionCol(String value)
public OneVsRestModel setRawPredictionCol(String value)
public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public OneVsRestModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<OneVsRestModel>
extra
- (undocumented)public MLWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public String toString()
toString
in interface Identifiable
toString
in class Object