(Scala-specific) Returns a new DataFrame that drops rows containing less than
minNonNulls non-null and non-NaN values in the specified columns.
(Scala-specific) Returns a new DataFrame that drops rows containing less than
minNonNulls non-null and non-NaN values in the specified columns.
1.3.1
Returns a new DataFrame that drops rows containing
less than minNonNulls non-null and non-NaN values in the specified columns.
Returns a new DataFrame that drops rows containing
less than minNonNulls non-null and non-NaN values in the specified columns.
1.3.1
Returns a new DataFrame that drops rows containing
less than minNonNulls non-null and non-NaN values.
Returns a new DataFrame that drops rows containing
less than minNonNulls non-null and non-NaN values.
1.3.1
(Scala-specific) Returns a new DataFrame that drops rows containing null or NaN values
in the specified columns.
(Scala-specific) Returns a new DataFrame that drops rows containing null or NaN values
in the specified columns.
If how is "any", then drop rows containing any null or NaN values in the specified columns.
If how is "all", then drop rows only if every specified column is null or NaN for that row.
1.3.1
Returns a new DataFrame that drops rows containing null or NaN values
in the specified columns.
Returns a new DataFrame that drops rows containing null or NaN values
in the specified columns.
If how is "any", then drop rows containing any null or NaN values in the specified columns.
If how is "all", then drop rows only if every specified column is null or NaN for that row.
1.3.1
(Scala-specific) Returns a new DataFrame that drops rows containing any null or NaN values
in the specified columns.
(Scala-specific) Returns a new DataFrame that drops rows containing any null or NaN values
in the specified columns.
1.3.1
Returns a new DataFrame that drops rows containing any null or NaN values
in the specified columns.
Returns a new DataFrame that drops rows containing any null or NaN values
in the specified columns.
1.3.1
Returns a new DataFrame that drops rows containing null or NaN values.
Returns a new DataFrame that drops rows containing null or NaN values.
If how is "any", then drop rows containing any null or NaN values.
If how is "all", then drop rows only if every column is null or NaN for that row.
1.3.1
Returns a new DataFrame that drops rows containing any null or NaN values.
Returns a new DataFrame that drops rows containing any null or NaN values.
1.3.1
(Scala-specific) Returns a new DataFrame that replaces null values.
(Scala-specific) Returns a new DataFrame that replaces null values.
The key of the map is the column name, and the value of the map is the replacement value.
The value must be of the following type: Int, Long, Float, Double, String, Boolean.
Replacement values are cast to the column data type.
For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0.
df.na.fill(Map( "A" -> "unknown", "B" -> 1.0 ))
1.3.1
Returns a new DataFrame that replaces null values.
Returns a new DataFrame that replaces null values.
The key of the map is the column name, and the value of the map is the replacement value.
The value must be of the following type:
Integer, Long, Float, Double, String, Boolean.
Replacement values are cast to the column data type.
For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0.
import com.google.common.collect.ImmutableMap; df.na.fill(ImmutableMap.of("A", "unknown", "B", 1.0));
1.3.1
Returns a new DataFrame that replaces null values in specified boolean columns.
Returns a new DataFrame that replaces null values in specified boolean columns.
If a specified column is not a boolean column, it is ignored.
2.3.0
(Scala-specific) Returns a new DataFrame that replaces null values in specified
boolean columns.
(Scala-specific) Returns a new DataFrame that replaces null values in specified
boolean columns. If a specified column is not a boolean column, it is ignored.
2.3.0
Returns a new DataFrame that replaces null values in boolean columns with value.
Returns a new DataFrame that replaces null values in boolean columns with value.
2.3.0
(Scala-specific) Returns a new DataFrame that replaces null values in
specified string columns.
(Scala-specific) Returns a new DataFrame that replaces null values in
specified string columns. If a specified column is not a string column, it is ignored.
1.3.1
Returns a new DataFrame that replaces null values in specified string columns.
Returns a new DataFrame that replaces null values in specified string columns.
If a specified column is not a string column, it is ignored.
1.3.1
(Scala-specific) Returns a new DataFrame that replaces null or NaN values in specified
numeric columns.
(Scala-specific) Returns a new DataFrame that replaces null or NaN values in specified
numeric columns. If a specified column is not a numeric column, it is ignored.
1.3.1
(Scala-specific) Returns a new DataFrame that replaces null or NaN values in specified
numeric columns.
(Scala-specific) Returns a new DataFrame that replaces null or NaN values in specified
numeric columns. If a specified column is not a numeric column, it is ignored.
2.2.0
Returns a new DataFrame that replaces null or NaN values in specified numeric columns.
Returns a new DataFrame that replaces null or NaN values in specified numeric columns.
If a specified column is not a numeric column, it is ignored.
1.3.1
Returns a new DataFrame that replaces null or NaN values in specified numeric columns.
Returns a new DataFrame that replaces null or NaN values in specified numeric columns.
If a specified column is not a numeric column, it is ignored.
2.2.0
Returns a new DataFrame that replaces null values in string columns with value.
Returns a new DataFrame that replaces null values in string columns with value.
1.3.1
Returns a new DataFrame that replaces null or NaN values in numeric columns with value.
Returns a new DataFrame that replaces null or NaN values in numeric columns with value.
1.3.1
Returns a new DataFrame that replaces null or NaN values in numeric columns with value.
Returns a new DataFrame that replaces null or NaN values in numeric columns with value.
2.2.0
(Scala-specific) Replaces values matching keys in replacement map.
(Scala-specific) Replaces values matching keys in replacement map.
// Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight". df.na.replace("height" :: "weight" :: Nil, Map(1.0 -> 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname". df.na.replace("firstname" :: "lastname" :: Nil, Map("UNKNOWN" -> "unnamed"));
list of columns to apply the value replacement. If col is "*",
replacement is applied on all string, numeric or boolean columns.
value replacement map. Key and value of replacement map must have
the same type, and can only be doubles, strings or booleans.
The map value can have nulls.
1.3.1
(Scala-specific) Replaces values matching keys in replacement map.
(Scala-specific) Replaces values matching keys in replacement map.
// Replaces all occurrences of 1.0 with 2.0 in column "height". df.na.replace("height", Map(1.0 -> 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name". df.na.replace("name", Map("UNKNOWN" -> "unnamed")); // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns. df.na.replace("*", Map("UNKNOWN" -> "unnamed"));
name of the column to apply the value replacement. If col is "*",
replacement is applied on all string, numeric or boolean columns.
value replacement map. Key and value of replacement map must have
the same type, and can only be doubles, strings or booleans.
The map value can have nulls.
1.3.1
Replaces values matching keys in replacement map with the corresponding values.
Replaces values matching keys in replacement map with the corresponding values.
import com.google.common.collect.ImmutableMap; // Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight". df.na.replace(new String[] {"height", "weight"}, ImmutableMap.of(1.0, 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname". df.na.replace(new String[] {"firstname", "lastname"}, ImmutableMap.of("UNKNOWN", "unnamed"));
list of columns to apply the value replacement. If col is "*",
replacement is applied on all string, numeric or boolean columns.
value replacement map. Key and value of replacement map must have
the same type, and can only be doubles, strings or booleans.
The map value can have nulls.
1.3.1
Replaces values matching keys in replacement map with the corresponding values.
Replaces values matching keys in replacement map with the corresponding values.
import com.google.common.collect.ImmutableMap; // Replaces all occurrences of 1.0 with 2.0 in column "height". df.na.replace("height", ImmutableMap.of(1.0, 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name". df.na.replace("name", ImmutableMap.of("UNKNOWN", "unnamed")); // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns. df.na.replace("*", ImmutableMap.of("UNKNOWN", "unnamed"));
name of the column to apply the value replacement. If col is "*",
replacement is applied on all string, numeric or boolean columns.
value replacement map. Key and value of replacement map must have
the same type, and can only be doubles, strings or booleans.
The map value can have nulls.
1.3.1
Functionality for working with missing data in
DataFrames.1.3.1